pysesa.spectral module

Calculate spectral statistics of a Nx3 point cloud

Syntax

You call the function like this:

data = pysesa.spectral.spec(points, nbin, res, proctype, lentype, taper, method).getdata()

or:

lengths = pysesa.spectral.spec(points, nbin, res, proctype, lentype, taper, method).getlengths()

or:

psdparams= pysesa.spectral.spec(points, nbin, res, proctype, lentype, taper, method).getstats()

or:

lengthscale = pysesa.spectral.spec(points, nbin, res, proctype, lentype, taper, method).getlengthscale()

or:

moments = pysesa.spectral.spec(points, nbin, res, proctype, lentype, taper, method).getmoments()

Parameters

points : ndarray
Nx3 point cloud

Other Parameters

nbin : int, optional [default = 20]
number of bins for power spectral binning
res : float, optional [default = 0.05]
spatial grid resolution to create a grid
proctype : int, optional [default = 1, no spectral smoothing]

proctype type: 1, no spectral smoothing

2, spectrum smoothed with Gaussian

lentype : int, optional [default = 1, l<0.5]

lengthscale type: 1, l<0.5

2, l<1/e

3, l<0

taper : int, optional [default = Hanning]

flag for taper type: 1, Hanning (Hann)

2, Hamming

3, Blackman

4, Bartlett

method : str, optional [default = ‘nearest’]
gridding type

Returns [requested through .getdata()]

self.data: list

slope = slope of regression line through log-log 1D power spectral density

intercept = intercept of regression line through log-log 1D power spectral density

r_value = correlation of regression through log-log 1D power spectral density

p_value = probability that slope of regression through log-log 1D power spectral density is not zero

std_err = standard error of regression through log-log 1D power spectral density

d = fractal dimension

l = integral lengthscale

wmax = peak wavelength

wmean = mean wavelength

rms1 = RMS amplitude from power spectral density

rms2 = RMS amplitude from bin averaged power spectral density

Z = zero-crossings per unit length

E = extreme per unit length

sigma = RMS amplitude

T0_1 = average spatial period (m_0/m_1)

T0_2 = average spatial period (m_0/m_2)^0.5

sw1 = spectral width

sw2 = spectral width (normalised radius of gyration)

m0 = zeroth moment of spectrum

m1 = first moment of spectrum

m2 = second moment of spectrum

m3 = third moment of spectrum

m4 = fourth moment of spectrum

phi = effective slope (degrees)

Returns [requested through .getpsdparams()]

self.psdparams: list

slope = slope of regression line through log-log 1D power spectral density

intercept = intercept of regression line through log-log 1D power spectral density

r_value = correlation of regression through log-log 1D power spectral density

p_value = probability that slope of regression through log-log 1D power spectral density is not zero

std_err = standard error of regression through log-log 1D power spectral density

d = fractal dimension

Returns [requested through .getlengths()]

self.lengths: list

wmax = peak wavelength

wmean = mean wavelength

rms1 = RMS amplitude from power spectral density

rms2 = RMS amplitude from bin averaged power spectral density

Returns [requested through .getlengthscale()]

self.lengthscale: float
l = integral lengthscale

Returns [requested through .getmoments()]

self.moments: list

Z = zero-crossings per unit length

E = extreme per unit length sigma = RMS amplitude

T0_1 = average spatial period (m_0/m_1)

T0_2 = average spatial period (m_0/m_2)^0.5

sw1 = spectral width

sw2 = spectral width (normalised radius of gyration)

m0 = zeroth moment of spectrum

m1 = first moment of spectrum

m2 = second moment of spectrum

m3 = third moment of spectrum

m4 = fourth moment of spectrum

_images/pysesa_colour.jpg